



## **The Numbers**

AB

- 13 Teams participated
- 18 (+2 historical) Solvers entered the main track 4(+1) in the incremental track
- 32 logics (2 logics with no eligible benchmarks)
   25 logics had participation from more than one team
- 67426 main track competition benchmarks (out of 137648 total)
- 339714 job-pairs executed (+ some repeats)
- ~ 1 week x 147 nodes of compute time
- 1 new sibling competition (SL-COMP) organized

## **Record numbers!**







 Some initial startup problems, partly bugs, partly user error, but otherwise

# StarExec worked great

- Required porting tools to StarExec thanks Tjark and David
- Thanks to Aaron Stump for prompt help when problems or questions arose
- Continuing to run major jobs with long (10 hour) timeouts to resolve sat/unsat status of unknown benchmarks



# **Solver participation – 2014**

| Solver                    | Affiliation   | 2005 | 2006 | 2007 | 2008 | 2005 | 2010 | 2011 | 2012 | 2013 | 2014 |
|---------------------------|---------------|------|------|------|------|------|------|------|------|------|------|
|                           |               | 12   | 2 12 | 9    | 13   | 12   | 10   | 11   | 11   | 10   | 18   |
| NEW                       |               |      |      |      |      |      |      |      |      |      | 3    |
| Abziz                     | Cairo U.      |      |      |      |      |      |      | x    | x    |      | 2    |
| Boolector                 | JKU           |      |      |      | х    | х    |      | Х    | X    | Х    | 3    |
| CVC/CVCLite/CVC3          | NYU           | ×    | ×    | х    | х    | х    | X    | X    | X    |      | X    |
| CVC4                      | NYU           |      |      |      |      |      | X    | X    | X    | X    | X    |
|                           |               |      |      |      |      |      |      |      |      |      |      |
| MathSat-HeavyBV           | Trento        |      |      |      |      |      |      |      | ×    |      |      |
| MathSAT 3,4,5             | FBK           | ×    | X    | Х    | х    | х    | X    | ×    | ×    | X    |      |
| SMTInterpol               | U. Freiburg   |      |      |      |      |      |      | ×    | Х    | X    | ×    |
| SONOLAR                   | U. Bremen     |      |      |      |      |      | X    | X    | X    | X    | ×    |
| STP, simplifyingSTP, STP2 | Stanford, MIT |      | ×    |      |      | ×    | X    | X    | ×    |      | X    |
| 4Simp                     | U. Melbourne  |      |      |      |      |      |      |      | X    |      | ×    |
| Tiffany de Wintermonte    | U. Melbourne  |      |      |      |      |      |      |      | Х    |      |      |
| opensmt                   | U. Lugano     |      |      |      | х    | х    | X    | X    |      | X    | ×    |
| veriT                     | UFRN          |      |      |      |      | х    | X    | X    |      | X    | X    |
| Z3                        | MSR           |      |      | х    | х    |      |      | X    |      | X    |      |
| AProVE NIA                | RWTH Aachen   |      |      |      |      |      | X    | X    |      |      | X    |
| MiniSMT                   | U. Innsbruck  |      |      |      |      |      | X    |      |      | X    |      |
| test_pmathsat             | FBK-IRST      |      |      |      |      |      | X    |      |      |      |      |
| barcelogic                | UPC           | ×    | X    | х    | х    | х    |      |      |      |      |      |
| beaver                    | UC Berkeley   |      |      |      | х    | X    |      |      |      |      |      |
| clsat                     | Washington U. |      |      |      | х    | х    |      |      |      |      |      |
| Sateen                    | U. ColBoulder | ×    | X    | х    | х    | х    |      |      |      |      |      |
| Spear                     |               |      |      | X    | х    |      |      |      |      |      |      |
| sword                     | U. Bremen     |      |      |      | х    | х    |      |      |      |      |      |
| Yices                     | SRI           | ×    | X    | х    | х    | ×    |      |      |      |      | х    |
| Alt-Ergo                  | CNRS          |      |      |      | х    |      |      |      |      |      |      |
| ArgoLib                   |               |      |      | х    |      |      |      |      |      |      |      |
| Fx7                       |               |      |      | х    |      |      |      |      |      |      |      |
| Ario                      |               | ×    | ×    |      |      |      |      |      |      |      |      |
| ExtSat                    |               |      | x    |      |      |      |      |      |      |      |      |
| НТР                       |               | ×    | ×    |      |      |      |      |      |      |      |      |
| Jat                       |               |      | x    |      |      |      |      |      |      |      |      |
| NuSMV                     |               |      | ×    |      |      |      |      |      |      |      |      |
| Sammy                     |               | ×    |      |      |      |      |      |      |      |      |      |
| SBT                       |               | ×    |      |      |      |      |      |      |      |      |      |
| Simplics                  |               | ×    |      |      |      |      |      |      |      |      |      |
| SVC                       |               | ×    |      |      |      |      |      |      |      |      |      |
|                           |               |      |      |      |      |      |      |      |      |      |      |
|                           |               |      |      |      |      |      |      |      |      |      |      |



## **Benchmarks & Logics**



- Many new benchmarks added
  - > 137648 main track benchmarks in 34 divisions but 35202 are easy and 35020 are unknown, leaving 67426 for competition
  - > 9925 benchmarks for incremental track in 8 divisions
- Thanks to many contributors
- Thanks to Morgan Deters, Clark Barrett for curation and uploading
  - Checked and reclassified the benchmarks, resulting in the expansion to 34 divisions



## **Incremental track**



- Sorry, data not yet reduced...
  - But it will be





## Parallel vs. Sequential

ΑB

- Emphasized sequential timing since we weren't sure that solvers were implemented or tuned for parallel solving.
- This is question for future competition design.







Some first-time participants:

- Hristina Palikareva, Cristian Cadar: Kleaver-STP, Kleaver-portfolio (QF\_ABV)
- Tung Vu Xuan: raSAT (QF\_NRA)
- Mate Soos: STP-Crypto-MiniSat4 (QF\_BV) second place in QF\_BV







## Kleaver

### The constraint solver of the symbolic execution engine KLEE:



## **High-Level Optimizations**

- Mathematical simplifications
- Expression canonicalization
- Grouping constraints into independent subsets
- Cache, which exploits subset/superset relations among constraint sets to determine satisfiability of subsequent queries



## **Teams & Solvers**



Some relatively new participants or returning after a few years:

- M. A. Abziz: two portfolio solvers (QF\_BV)
- Carsten Fuhs:

AProVE (QF\_NIA)





## **Teams & Solvers**



Other regulars in single divisions:

- T. Hansen: 4Simp (QF\_BV)
- Antti Hyvarinen: OpenSMT2 (QF\_UF)
- Florian Lapschies: SONOLAR (QF\_BV, QF\_ABV)



## **OpenSMT2**



- OpenSMT is a GPL-licensed SMT solver
- The development is coordinated at the University of Lugano in Switzerland
- Version 2 has been under development since summer 2012
  - Native support for the SMTLIB2 standard
  - Separation of the abstract term dag from the theory related representations (such as EUF terms)
  - Compact representation and efficient memory management for the data types including Enodes
  - Currently support for QF\_UF (but more is to come)

We are looking for a person interested in doing a PhD on a project related to parallelized SMT solving!







Other regulars in single divisions:

 A. Biere, et al.: Boolector (QF\_BV) winner QF\_BV

## Boolector (2 variations) (QF\_ABV) winner QF\_ABV









## Boolector at the SMTCOMP'14

Aina Niemetz, Mathias Preiner, Armin Biere

#### Major changes since SMTCOMP'12:

- new lemmas on demand (LOD) engine: array operations and arrays as lambda terms and uninterpreted functions
- don't care reasoning to speed up LOD
  - Boolector (justification)
  - Boolector (dual propagation)

#### Further improvements:

- support for SMT-LIB v2 macros (define-fun)
- new model generation algorithm (fixes performance drop of older versions)
- internal model validation for satisfiable instances
- cloning support (cf. cloning in Lingeling)
- API call tracing (record/replay sequences that trigger erroneous behavior)
- model-based testing

14

- fixes in both rewrite engine and the incremental API
- fixed and reenabled the previously disabled unconstrained optimization



## **Teams & Solvers**



Entrants in many divisions:

- Clark Barrett, Morgan Deters: (all 32 divisions) CVC4 – winner in 14 divisions CVC3 – winner in 3 divisions
- Pascal Fontaine, David Deharbe: (17 divisions) veriT – winner in UFLRA
- Bruno Dutertre: (15 divisions) Yices2 – winner in 10 divisions (back after a few years' absence)
- Jochen Hoenicke, Jürgen Christ: (8 divisions) SMTInterpol – winner in QF\_LIA







Clark Barrett (NYU) Cesare Tinelli (U Iowa)

Arithmetic, Arrays, Bit-vectors, Inductive Data Types, Quantifiers, Sets, Strings, Uninterpreted Functions

Features

Theories

Models, Proofs, Open-Source, BSD License, Portfolio mode, Variety of API's

Performance in SMT-COMP (all divisions, after bug-fix) Top solver in 9 divisions (AUFLIA, AUFNIRA, LRA, QF\_AUFBV, QF\_LIA, QF\_LRA, QF\_UFNIA, UF, UFLIA) Overall score (all divisions): 65.56 (Z3: 73.97) Excluding non-linear: 55.57 (Z3: 54.82)







#### http://www.veriT-solver.org

David Déharbe, Pablo Federico Dobal and Pascal Fontaine

Loria, INRIA, Université de Lorraine (France) and UFRN (Brazil)

What is new:

- improved efficiency on UF and LRA (still space for improvement)
- stabilized on many categories
- To do: LIA, better combinations, better quantifiers

Goals:

- UF, LIA, LRA, NRA (Redlog), NIA, combinations and quantifiers
- o for verification platforms B, TLA+

Proofs!

17



# **Further Thoughts**



- Solvers:
  - First-time entrants had some trouble with system configurations getting a static build of a tool and getting it to work on StarExec
    Two entrants dropped out after expressing initial intention
- Benchmarks:
  - Still need more benchmarks; some divisions have relatively few
- Competition:
  - StarExec allowed us to run all eligible benchmarks
  - > Continuing to run jobs to resolve unknown benchmarks
  - Revise scoring more emphasis on timing?
  - > Parallel or sequential?
  - Better support needed for incremental benchmarks
  - Separate measure of performance on quick jobs?
- Teams:

18

- Congratulations on your accomplishments
- Thanks for your participation





# SL-COMP'14

## **Competition of solvers for Separation Logic**





Separation Logic [O'Hearn,Reynolds et al. CSL'01, LICS'02] fragment of Symbolic Heaps with Recursive Definitions

# $$\begin{split} \Phi &::= \Pi \land \Sigma \\ \Pi &::= X = Y \mid X \neq Y \mid \Pi \land \Pi \\ \Sigma &::= emp \mid X \mapsto \{(f_0, Y_0), \ldots\} \mid \Sigma \bigstar \Sigma \mid P(Y_0, \ldots) \end{split}$$

 $\mathsf{P}(\mathsf{E},\ldots) \triangleq Z_0, \, \Pi_0 \wedge \Sigma_0 \, \vee \, \ldots \, \exists \vee \, Z_k, \, \Pi_k \wedge \Sigma_k$ 



## **Input Theory**



Separation Logic [O'Hearn, Reynolds et al. CSL'01, LICS'02] fragment of Symbolic Heaps with Recursive Definitions Χ  $X \neq Y \land Z \neq NULL \land$ → NULL nII(X,Y,NULL) ★  $Y \mapsto \{(n, NULL), (d, Z)\}$ Ζ **Is(E,F) ▲** E=F ∧ emp  $\lor \dashv U. E \neq F \land E \mapsto \{(s,U)\} \bigstar Is(U,F)$ S **nll(E,F,H) ≜** E=F ∧ emp  $\lor \exists U, V. E \neq F \land E \mapsto \{(n, U), (d, V)\} \bigstar$ Is(V,H)S GRAMMATECH

## **Benchmarks**

T

| Problems:                                            |             | <b>678</b> |
|------------------------------------------------------|-------------|------------|
| <ul> <li>Checking satisfiability</li> </ul>          |             | 25%        |
| › Checking entailment validity                       |             | 75%        |
| Kind of recursive definitions                        | (division): |            |
| <ul> <li>acyclic singly linked lists (ls)</li> </ul> | sll0a       | 59%        |
| › fixed (nll, dll, skl, …)                           | FDB         | 6%         |
| vuser-defined                                        | UDB         | 35%        |
| Origin:                                              |             |            |
| > crafted                                            |             | 41%        |
| random                                               |             | 59%        |
| Ξ                                                    |             |            |

# **Competition Rules**

- Input format in SMTLIBv2
  - > theory QF\_S



- > semantics discussed in smtcomp14-sl@googlegroups
- > benchmarks available in github project smtcomp14-sl
- Use of pre-processors for some solvers
- No scrambling of benchmark problems
- Solvers running on Star-Exec
- Same score computation as in SMT-COMP'14



## **Solvers**



Asterix (TUM and MPI, Germany and UCL, UK) › J. Navarro Perez and A. Rybalchenko Cyclist-SL (UCL, UK) > J. Brotherston, N. Gorogiannis, and R. L. Petersen SLEEK (NUS, Singapore) > Q.L. Le and W.N. Chin SLIDE (Verimag, France and VeriFIT, Czech Rep.) A. Rogalewicz, R. Iosif, and T. Vojnar SLSAT (UCL, UK) > J. Brotherston, C. Fuhs, N. Gorogiannis, and J. Navarro Perez SPEN (LIAFA, France and VeriFIT, Czech Rep.) > C. Enea, O. Lengal, M. Sighireanu, and T. Vojnar





|                | SII0a(sat) | SII0a(=>) | FDB(=>) | UDB(sat) | UDB(=>) |
|----------------|------------|-----------|---------|----------|---------|
| Asterix        | 1          | 1         |         |          |         |
| Cyclist-<br>SL |            | 4         | 2       |          | 1       |
| SLEEK          | 3          | 3         | 3       | 1        | 3       |
| SLIDE          |            |           |         |          | 2       |
| SLSAT          | 4          |           |         | 2        |         |
| SPEN           | 2          | 2         | 1       |          |         |

http://smtcomp.sourceforge.net/2014/results-SLCOMP2.shtml



## **Future Work**



- Re-defining the SL theory in SMTLIBv2
- Including more benchmarks
  - > in existing divisions
  - > more divisions, e.g., SL + AI
  - > from program analysis and verification tools
- Other problems
  - > sat witness
  - > (bi-)abduction



## Thanks



- David Cok
- Clark Barrett and Cesare Tinelli
- Solver providers: Nikos Gorogiannis, Ondrej Lengal, Le Quang Loc, Juan Navarro Perez, Chin Wei Ngan, Adam Rogalewicz, Radu Iosif, Andrey Rybalchenko, Tomas Vojnar, Constantin Enea.

 Group list support: Josh Berdine, Thomas Wies, Christoph Haase.

