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Polynomial constraints (QF_NRA)

• Polynomial constraints (with integer coefficients) 

consist of 

�Bounding inputs  xi ∈[li, hi]  

�Polynomial equality/inequality  fj ＞ 0, fi ≧ 0, fi ＝ 0

�SAT if bounded quantification

∃ ∈ ∈ ∧ ≧

≧

�SAT if bounded quantification

∃x1∈[l1,h1] … xn∈[ln,hn] .∧j fj ～ 0 (～= ＞, ≧, ＝) 
holds over real numbers; UNSAT otherwise.

• Motivated by 

�Roundoff error analysis [Do Ogawa, 2009]



y

Polynomial constraints example

3(      , 1)

∃x y. f(x,y) < 0 ∧ g(x,y) < 0  ? 

f(x,y) = y2 – (x2 – 1)y + 1

g(x,y) = x2 + y2 – 4 
where
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f(1.8,0.9)= -0.566
g(1.8,0.9)= -0.45  



raSAT for polynomial (strict) inequality

• Polynomial inequality (with bounded quantification)

�∃x1∈(l1,h1) … xn∈(ln,hn) .∧j fj ＞ 0

• Strict inequality allows 

�approximation  

�open intervals only�open intervals only

�SAT instances in rational numbers (if exists) 

• raSAT web site (participated QF_NRA in SMTcomp) 

http://www.jaist.ac.jp/~mizuhito/tools/rasat.html

�Current raSAT support ad-hoc equality 

(e.g., equality with integers) 



By raSAT (previous example)

(set-logic QF_NRA)
(declare-fun x () Real)
(declare-fun y () Real)
(assert (< (+ (- (* y y) (* (- (* x x) 1.) y)) 1.) 0.))
(assert (< (- (+ (* x x) (* y y)) 4.) 0.))

x=0.687783209694

y=1.875

(assert (< (- (+ (* x x) (* y y)) 4.) 0.))
(check-sat)



Approximation methodology

• Over-approximation (O.T)

O.Tx1∈I1 … xn∈In.∧j fj ＞ 0 O.T-UNSAT
O.T-SAT

O.T-valid

SAT

unknown

f(x1,…,xn) > 0
0

0

0

�Instance: Interval Arithmetic (IA)

• Under-approximation (U.T)

�Instance: testing (to accelerate SAT)

UNSAT

0

0U.Tx1∈I1 … xn∈In.∧j fj ＞ 0
U.T-UNSAT

U.T-SAT

SAT

unknown



raSAT loop

• Our idea : Instead of exact theory (QE-CAD), apply 

over/under approximations + refinement

• Refinement by box decomposition. 

Over-approximation

Refinement (Decomposition)

x∈(l,h) ⇒ x∈(l,m)∨x∈(m,h)

Over-approximation

Interval Arithmetic (IA)

Under-approximation

Testing



Box decomposition (starting from 1 large box)

f(x1,…,xn) > 0
0

0

0

0

0

Testing 

accelerates



Soundness / (relative) completeness of raSAT

• Th. Let ∃x1∈(l1,h1) … xn∈(ln,hn) .∧j fj > 0

Let Dj = { (x1, …, xn) | fj (x1, …, xn) > 0 } 

�Soundness: If raSAT checks SAT (resp. UNSAT), 
it is really SAT (resp. UNSAT) 

�Completeness: Assume fair box decomposition

I1,I2,…,In P

�Completeness: Assume fair box decomposition

–If SAT, raSAT eventually finds SAT-instance in Q.

–If closure(Di)∩closure(Dj) =φ(i≠j) and closure(Ii) is 
compact, raSAT eventually detects UNSAT.

• Alternative: δ-equality (x=0 ⇒ -δ<x<δ) in dReal.



SAT UNSAT

Completeness ideas

Failure to detect UNSAT

Toughing case

⇒ Groebner basis

Converging case

(unbounded intervals)



raSAT implementation designraSAT implementation design



Interval arithmetic design

Classical interval 
(CI)(1)

Affine interval  (AI)(2)

• Affine interval (AI) [Stolfi 1997] 

�Use noise symbols ε, interpreted as ε∈(-1,1).

�Precision incomparable between CI and AI.

�AI fails for open-ended boxes; (∞+∞ε) as (0,∞)

(CI)(1)

Def

Arithmetic

(e.g., x – x, 

x××××x)

[1,3] － [1,3] = [-2,2] (2 + ε1) － (2 + ε1) = 0

[1,3] × [1,3] = [1,9] (2 + ε1)×(2 + ε1) = 4 + 4ε1 + ε1 ε1

hilo

],[ hilox =

x0-x1 x1 x2-x2

ε2

110

ε

+++=

i

nn
εx...εxxx

∈(-1,1)



raSAT implementation design

• raSAT procedure

1. Starts with a bounded box, e.g., (0,∞）⇒ (0,10), 
and compute with AI. 

2. If SAT, confirm it with an error bound guaranteed  
floating point library iRRAM (SAT confirmation)

3. If UNSAT, check the whole box with CI. 3. If UNSAT, check the whole box with CI. 

• Not implemented 

� Equality handling (intermediate value theorem, 
Groebner basis) 

⇒ Adhoc equality with intergers. 

� UNSAT confirmation (related to UNSAT core) 



Explosion by box decomposition

• If n-variables are decomposed

�2n boxes to explore! 

• Priority on variables. 

1. Choice of atomic polynomial 

⇒

1. Choice of atomic polynomial 

inequality (API) 

⇒ Dependency among

unsatisfied APIs.

2. Choice of variables in an API

⇒ Sensitivity, e.g. x3 – 2xy for x = 1+ε1 , y = 2 + ε2 

“x” is the most sensible



Greater-than-equal, equality handling

• Greater-than-equal ≧

�Strict-SAT: f > δ instead of  f ≧ 0, for some δ> 0.

�UNSAT: f > -δ instead of  f ≧ 0

• Equality =• Equality =

�Intermediate value theorem 

–Currently, only for single equality 

∃x1∈(l1,h1) x2∈(l2,h2) .∧j fj > 0 ∧ g = 0 )

�Groebner basis 

–Future work 



Preliminary experiments on SMTlib

• Mostly focus on Zankl family (166 benchmarks) 

�Currently around 50 (depending on tuning), where 

– 89 by Z3 4.3, 50 by Mathematica, 46 by miniSMT.

�Remarkable SAT examples (other tools fail) 

– matrix-2-all-8 (17vars, 25APIs, 56 max |API| )

– matrix-5-all-7 (267vars, 384APIs, 822 max |API|)

≧

– matrix-5-all-7 (267vars, 384APIs, 822 max |API|)

�Other benchmarks often contains ≧, =.

• Stronger than Z3 4.3

�When the maximal degree of an API > 15

�When the number of variables in an API > 15

�When the maximal length of an API > 50 

Z3 4.3 has good strategy to choose a subset of APIs.



Related interval arithmetic-based tools

• iSAT3

�Classival interval 

�No under approximation (testing) 

–SAT by IA-valid only

• dReal 

�Sharing approximation idea

�Only with interval arithmetic 

�δ-SAT does not imply SAT (aim different) 



Conclusion and future works

• raSAT for QF_NRA is presented.

�With single methodology: raSAT loop

�Experiments are preliminary, some remarkable 
examples

�Participated SMTcomp 2014 (4th among 4)

• ToDo

�Implementation revision (to accept disjunctive 
polynomial constraints), strategy tuning

�UNSAT core improvement

�Equality handling (Int. value Th., Groebner basis)

�Mixed integers. 



Thank you! 



Benchmark example: zankl/matrix-2-all-8

17 variables

25 polynomials

56 = Max length

SAT in 7.612secSAT in 7.612sec

(raSAT)



Completeness proof ideas

SAT UNSAT

• SAT: if f1>0 and f2>0 have intersection, there must be 

a neighborhood of an internal point. 

• UNSAT: if f1≧0 and ｆ2≧0 are UNSAT and closure s of 
intervals are compact, we have lower bound of 

distance δ>0 between D1 and D2. 

�By induction on the number of refinement steps. 



Where UNSAT limitation comes

• Boundary conditions (kissing situation)

�x2+y2 < 22 ∧ (x-4)2+(y-3)2 < 32 

⇒ two closures intersect at (1.6,1.2)

• Convergence 

∧ ∧

⇒

• Convergence 

�y > x + 1/x ∧ y < x ∧ x > 0 

⇒ x needs an upper bound.



Chebyshev affine interval (Khanh-Ogawa 12)

• Focusing on precision of mulatiplications of the same 

noise symbol by linear approximations.

|ε| － ¼ ≦ε2
＜ |ε| ε－ ¼ ≦ε・|ε| ≦ ε＋ ¼



Equality (=) handling by intermediate value th. 

• Idea: Let ∃x1∈(l1,h1) x2∈(l2,h2) .∧j fj > 0 ∧ g = 0

�Assume that x1∈(a1,b1) x2∈(a2,b2) .∧j fj > 0 is IA-

valid.

�We found two points in (a1,b1)×(a2,b2) such that 
g<0 and g>0.g<0 and g>0.

• We see there are g=0. (SAT)

(By intermediate value theorem)

�UNSAT by  –δ< g < δ

instead of g = 0 a1

a2
b1

b2

g>0

g<0

g=0



Equality handling : Multiple equality (idea)

• For ∃x1∈(l1,h1) x2∈(l2,h2) .(∧j fj > 0)∧ g1=0 ∧ g2=0, 

assume that 

�x1∈(a1,b1) x2∈(a2,b2) .∧j fj > 0 is IA-valid.

�c1,d1 with g1<0 on {c1}×(a2,b2), g1>0 on {c2}×(a2,b2)

�c ,d with g <0 on (a ,b ) {d }, g >0 on (a ,b ) {d }

∈ ∈ ∧

�c2,d2 with g2<0 on (a1,b1)×{d1}, g2>0 on (a1,b1)×{d2}

• Then, we see there are g1=g2=0.

g1=0

g2=
0

a1

a2
b1

b2

c1 d1

d2

c2

g1<0 g1>0

g2>
0

g2<
0

Requires 

“|Vars| ≧ |equations|”



Groebner basis (Buchberger 65)

• Groebner basis is for computing quotient of ideals. 

�Starting from given basis of ideals (with WFO on 
monomials). 

�Completion for polynomials (in which variables are 
not substituted and completion always succeed). 

• E.g., Q[z,w]/(z2 – 3, zw2 + 2w – 3z)  with w > z.
→Regard them z2 → 3, zw2 → – 2w + 3z

→Critical pair (3w2, – 2zw + 3z2)

→New rule 3w2 → – 2zw + 9, …

→Finally, we obtain z2 → 3, 3w2 → – 2zw + 9 and 
Q[z,w]/(z2 – 3, 3w2 + 2zw – 9).



Linear approximations

Interval Octagon PolyhedraZone

Over-approximation

Interval Octagon PolyhedraZone

Interval Octagon PolyhedraZone

Under-approximation


