
Multi-Solver Support in Symbolic Execution

Hristina Palikareva, Cristian Cadar

SMT Workshop 2014, Vienna, 17 July 2014

Dynamic Symbolic Execution
Automated program analysis technique that employs an SMT
solver to systematically explore paths through a program
• heuristics to prioritise interesting paths
• generating, for each explored path, a test input exercising it

GENERATION OF

HIGH-COVERAGE

TEST SUITES

BUG FINDING

Uncovered deep, corner-

case bugs in complex

real-world software

Active Area of Research
OPEN-SOURCE CREST, KLEE, SYMBOLIC JPF

INDUSTRY MICROSOFT (SAGE, PEX)
NASA (SYMBOLIC JPF, KLEE)
IBM (APOLLO)
FUJITSU (SYMBOLIC JPF, KLEE/ KLOVER)

KLEE

Symbolic execution tool based on LLVM compiler framework
• Mixed concrete/symbolic interpreter for LLVM bit code
• Targets mainly C programs
• Employs STP as default solver
• Available as open source from:

http://klee.llvm.org

http://klee.llvm.org

Plan for the Talk

Toy example

Outline the main characteristics of the SMT queries
• illustrated with data obtained by running KLEE

Introduce an extension of KLEE that uses Boolector, STP
and Z3 via metaSMT

• compare the solvers’ performance

Discuss options for designing a parallel portfolio solver

Dynamic Symbolic Execution: Toy Example

int main() {
int a[7] =

{2,3,5,7,11,13,17};
int n = symbolic();
if (n > 6) {
return 1;

}
return a[n];

}

n = ∗

n = ∗ PC = true

n > 6

n > 6 PC = true

return 1

return 1 PC = {n > 6}

return a[n]

0 ≤ n ≤ 6PC = {n ≤ 6}

return a[n]

PC = {n ≤ 6, 0 ≤ n ≤ 6}

Index out
of bounds!

n = 42

n = 3n = −10

n > 6n ≤ 6

0 ≤ n ≤ 6¬(0 ≤ n ≤ 6)

Dynamic Symbolic Execution: Toy Example

int main() {
int a[7] =

{2,3,5,7,11,13,17};
int n = symbolic();
if (n > 6) {
return 1;

}
return a[n];

}

n = ∗n = ∗ PC = true

n > 6n > 6 PC = true

return 1return 1 PC = {n > 6}return a[n]PC = {n ≤ 6}

0 ≤ n ≤ 6PC = {n ≤ 6}

return a[n]

PC = {n ≤ 6, 0 ≤ n ≤ 6}

Index out
of bounds!

n = 42

n = 3n = −10

n > 6n ≤ 6

0 ≤ n ≤ 6¬(0 ≤ n ≤ 6)

Dynamic Symbolic Execution: Toy Example

int main() {
int a[7] =

{2,3,5,7,11,13,17};
int n = symbolic();
if (n > 6) {
return 1;

}
return a[n];

}

n = ∗n = ∗ PC = true

n > 6n > 6 PC = true

return 1return 1 PC = {n > 6}
0 ≤ n ≤ 6PC = {n ≤ 6}

return a[n]

PC = {n ≤ 6, 0 ≤ n ≤ 6}

Index out
of bounds!

n = 42

n = 3n = −10

n > 6n ≤ 6

0 ≤ n ≤ 6¬(0 ≤ n ≤ 6)

Dynamic Symbolic Execution: Toy Example

int main() {
int a[7] =

{2,3,5,7,11,13,17};
int n = symbolic();
if (n > 6) {
return 1;

}
return a[n];

}

n = ∗n = ∗ PC = true

n > 6n > 6 PC = true

return 1return 1 PC = {n > 6}
0 ≤ n ≤ 6PC = {n ≤ 6}

return a[n]

PC = {n ≤ 6, 0 ≤ n ≤ 6}

Index out
of bounds!

n = 42

n = 3n = −10

n > 6n ≤ 6

0 ≤ n ≤ 6¬(0 ≤ n ≤ 6)

Challenges in Symbolic Execution

Path Explosion
Number of paths exponential in number of symbolic branches
• Possibly infinite!

Constraint Solving
• Often the main performance bottleneck!

• 12 GNU Coreutils, each ran for 1h using KLEE

Solver (% of time)

total STP

97.1 90.5

Characteristics of the SMT Queries

Characteristics of the SMT Queries

1. Array Operations
• Programs often take as input arrays (e.g., strings)
• Concrete arrays become part of the symbolic constraints

• when indexed by symbolic input

• Symbolic pointers and pointer arithmetic modelled using arrays

2. Bit-Level Accurate Constraints
Motivation: bugs are often triggered by corner cases related to:

• Bitwise operations, arithmetic overflows, pointer casting, . . .

KLEE is precise!

• Treats memory as untyped bytes
• models each memory block as an array of 8-bit BVs

• Encodes program executions using the SMT theory QF_ABV

Characteristics of the SMT Queries

1. Array Operations
• Programs often take as input arrays (e.g., strings)
• Concrete arrays become part of the symbolic constraints

• when indexed by symbolic input

• Symbolic pointers and pointer arithmetic modelled using arrays

2. Bit-Level Accurate Constraints
Motivation: bugs are often triggered by corner cases related to:

• Bitwise operations, arithmetic overflows, pointer casting, . . .

KLEE is precise!

• Treats memory as untyped bytes
• models each memory block as an array of 8-bit BVs

• Encodes program executions using the SMT theory QF_ABV

Characteristics of the SMT Queries
3. Large Number of Queries
Query at every symbolic branch and dangerous symbolic
operation

BMC Symbolic Execution

Queries typically much simpler, but significantly more of them!

SMT solver needs to:
• Solve efficiently myriads of relatively simple queries (conjunctions)

• KLEE uses default per-query timeout of 30s

• Optimise performance for sequences of queries

Characteristics of the SMT Queries
3. Large Number of Queries
Query at every symbolic branch and dangerous symbolic
operation

BMC Symbolic Execution

Queries typically much simpler, but significantly more of them!

SMT solver needs to:
• Solve efficiently myriads of relatively simple queries (conjunctions)

• KLEE uses default per-query timeout of 30s

• Optimise performance for sequences of queries

Distribution of Query Types

20%

40%

60%

80%

100%

[base64

chm
od

com
m

csplit

dircolors

echo
env

factor

join
ln m

kfifo

B
o
o
le
c
to
r

0-0.1s 0.1-1s 1-10s 10-20s 20-30s Timeout

20%

40%

60%

80%

100%

Z
3

20%

40%

60%

80%

100%

S
T
P

20%

40%

60%

80%

100%

[base64

chm
od

com
m

csplit

dircolors

echo
env

factor

join
ln m

kfifo

B
o
o
le
c
to
r

0-0.1s 0.1-1s 1-10s 10-20s 20-30s Timeout

20%

40%

60%

80%

100%

Z
3

20%

40%

60%

80%

100%

S
T
P

• Left bar: % of queries solved by STP in each time interval
• Right bar: % of time spent executing queries of each type

High Query Rates

Application Queries/sec

[55.1
base64 73.8
chmod 36.4
comm 189.0
csplit 49.7
dircolors 49.3
echo 34.8
env 109.1
factor 5.3
join 36.6
ln 103.8
mkfifo 62.3

Average 67.1

Characteristics of the SMT Queries

4. Frequent Need for Concrete Solutions
Concrete solutions for satisfiable SMT queries required to:

• Generate test cases
• Interact with outside environment

• e.g., before calling an uninstrumented function, all symbolic
bytes that the function may access need to be concretized

• Simplify constraints
• e.g., double pointer dereferences

• Apply optimizations
• e.g., KLEE caches solutions for all SAT queries

Satisfiable assignments required for the majority of queries!

KLEE: Counterexample Cache

Maps constraint sets (PCs) to:
• Counterexample if SAT
• Special sentinel if UNSAT

Exploits subset/superset relations among constraint sets to
determine satisfiability of subsequent queries:
• If set is UNSAT, any of its supersets is UNSAT too
• If set is SAT, any of its subsets is SAT too

KLEE: Counterexample Cache

{x > 3, y > 2, x + y = 10} 7−→ {x = 4, y = 6}

More Observations
1. Adding constraints often does not invalidate solution:

{x > 3, y > 2, x + y = 10, x < y} 7−→ {x = 4, y = 6}

• Specific to symbolic execution
• Reason: upon symbolic branch, we add constraint to the current PC
• ⇒ solution will hold for either then or else branch
• Cheap to check: substitute solution in constraints, spare solver call
• The cache tries all of its stored subsets in turn until cache hit

2. Cache hit rate depends on counterexamples stored in cache
• If assignment in cache was {x = 7, y = 3}, no cache hit

KLEE: Counterexample Cache

{x > 3, y > 2, x + y = 10} 7−→ {x = 4, y = 6}

More Observations
1. Adding constraints often does not invalidate solution:

{x > 3, y > 2, x + y = 10, x < y} 7−→ {x = 4, y = 6}

• Specific to symbolic execution
• Reason: upon symbolic branch, we add constraint to the current PC
• ⇒ solution will hold for either then or else branch
• Cheap to check: substitute solution in constraints, spare solver call
• The cache tries all of its stored subsets in turn until cache hit

2. Cache hit rate depends on counterexamples stored in cache
• If assignment in cache was {x = 7, y = 3}, no cache hit

KLEE: Speedup With Counterexample Cache

Application Queries/sec Speedup

No caching Caching

[55.1 7.9 0.2
base64 73.8 42.2 0.6
chmod 36.4 12.6 0.4
comm 189.0 305.0 1.6
csplit 49.7 63.5 1.3
dircolors 49.3 4,251.7 86.2
echo 34.8 4.5 0.1
env 109.1 26.3 0.2
factor 5.3 22.6 4.2
join 36.6 3,401.2 92.9
ln 103.8 24.5 0.2
mkfifo 62.3 7.2 0.2

Average 67.1 680.8 10.2

Caching overall helps, but sometimes hurts performance!

Need better, more adaptive caching algorithms

Multi-Solver Support: KLEE with metaSMT

KLEE

metaSMT

BoolectorZ3STP

Critical to interact with solvers using their native APIs
• High query rate
• Average size of a KLEE query in SMTLIB – 100s of Kb
• Sending SMTLIB text through pipes too much parsing overhead

metaSMT

• Unified API for transparently using a number of SMT solvers
• which is efficiently translated at compile time, through template

meta-programming, into native APIs of solvers (< 3% overhead)

KLEE with metaSMT: Solver Comparison

Benchmarks
12 applications from GNU Coreutils 6.10 application suite

Methodology
1. Run each benchmark for 1h using KLEE’s default solver STP
2. Record number of executed instructions
3. Rerun each benchmark for the same number of instructions

• with Boolector, STP, Z3 via metaSMT

Solver Comparison: No Caches

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

[base64

chm
od

com
m

csplit

dircolors

echo
env

factor

join
ln m

kfifo

T
im

e
 (

s
)

STP
Z3

Boolector

• Query timeout: 30s
• Overall KLEE timeout: 3h
• STP and Z3 have no query timeouts

• upon timeout, KLEE terminates the current execution path

• Overall winner: STP
• Z3 beats STP on factor

• Disclaimer: SMT solvers used with their default configurations

Distribution of Query Types

20%

40%

60%

80%

100%

[base64

chm
od

com
m

csplit

dircolors

echo
env

factor

join
ln m

kfifo

B
o
o
le
c
to
r

0-0.1s 0.1-1s 1-10s 10-20s 20-30s Timeout

20%

40%

60%

80%

100%

Z
3

20%

40%

60%

80%

100%

S
T
P

• Left bar: % of queries solved by solver in time interval
• Right bar: % of time spent executing queries of each type

Solver Comparison: Caches Enabled

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

[base64

chm
od

com
m

csplit

dircolors

echo
env

factor

join
ln m

kfifo

T
im

e
 (

s
)

STP
Z3

Boolector

Effects of Caching
• Different solutions can lead to different cache hit rates

• env: all solvers same # of queries, Z3 136 less cache hits
• Even when hit rates are the same, the order of solutions in the cache

affects performance
• echo: all solvers same # overall queries and queries reaching solver
• Z3: spends less time in caching module, hence wins
• for 764 queries that reach the solver, STP faster than Z3, 14s vs. 74s

Portfolio Solver in Symbolic Execution

KLEE

metaSMT

BoolectorZ3STP

Portfolio Solver: Level of Granularity

Coarsest-Grained Option
• Run multiple variants of KLEE, each equipped with different solver
• Give user the results associated with the best-performing variant
+ No overhead, runs are independent, easy to deploy

• Fix time budget, select the run that optimises a certain metric
• Fix objective, abort when first variant achieves objective

Portfolio at the Level of Individual Solver Queries
+ Can outperform all single-solver variants

• Reason: different solvers perform better on different queries
− Performance overhead can be quite high and negate benefits

• Reason: vast majority of queries take very little time to complete
• Time to spawn and monitor threads/processes can be higher than

solving time

• Idea: start single solver, spawn more if it goes beyond given time

Portfolio Solver: Level of Granularity

Coarsest-Grained Option
• Run multiple variants of KLEE, each equipped with different solver
• Give user the results associated with the best-performing variant
+ No overhead, runs are independent, easy to deploy

• Fix time budget, select the run that optimises a certain metric
• Fix objective, abort when first variant achieves objective

Portfolio at the Level of Individual Solver Queries
+ Can outperform all single-solver variants

• Reason: different solvers perform better on different queries
− Performance overhead can be quite high and negate benefits

• Reason: vast majority of queries take very little time to complete
• Time to spawn and monitor threads/processes can be higher than

solving time

• Idea: start single solver, spawn more if it goes beyond given time

Portfolio Solver: Caching

Which counterexample values do we keep?

Store in Cache Counterexample of the First Solver

+ Easiest

Store in Cache Counterexamples of Multiple Solvers

• If they perform similarly
• Option to keep all or some of the counterexamples
+ Keeping more counterexamples may increase the hit rate
− But degrade overall performance

• depending on order of counterexamples in cache
+ SMT and SAT solvers are incremental

• may better tune their underlying heuristics

Portfolio Solver: Candidate Solvers

Include in Portfolio:

• Different SMT solvers
• Different versions of the same SMT solver
• Different configurations of the same SMT solver

• plethora of options availabe
• often impossible to tell in advance which parameter values

will perform better on which queries
• Same SMT solver configured with different SAT solvers

• and/or different SAT configurations

Summary

Presented our experience and results on integrating support for
multiple SMT solvers in the symbolic execution engine KLEE.
• Outlined the key characteristics of the SMT queries
• Identitified several aspects for designing better SMT solvers

• Counterexample values and caching

• Discussed options for designing a parallel portfolio solver

Support for using Boolector, STP and Z3 via metaSMT now fully
integrated in the mainstream version of KLEE:

http://klee.llvm.org

http://klee.llvm.org

Discussion

New division in SMT-COMP targeted at symbolic execution tools

Why?
Symbolic execution needs are quite different from most other
application domains, and the current SMT-COMP format and
benchmarks are not exactly representative.

Significant Aspects
• Counterexample values
• Solving relatively simple queries fast
• Solving sequences of similar queries fast
• Fast API-based communication

KLEE: Types of Queries

Branch Queries
Issued when KLEE reaches a symbolic branch: (PC,E)

E PC = {C1,C2, . . . ,Cn}, SAT

??

Is PC⇒ E valid?
• provably true: C1 ∧ C2 ∧ . . . ∧ Cn ∧ ¬E is UNSAT
• provably false: C1 ∧ C2 ∧ . . . ∧ Cn ∧ E is UNSAT
• neither

Counterexample Queries
• Used to request solution for current PC (e.g., at end of path)

KLEE: Constraint-Solving Optimisations

Constraint
Independence

Branch Cache

Counterexample
Cache

STP

• Structured as a sequence of solver passes
• Can be enabled and disabled via KLEE’s command-line options

KLEE: Constraint Independence

Essentially, eliminating redundant constraints
• Branches typically depend on small number of variables
• Given a branch query (PC,E), remove from PC all

constraints which are not transitively related to E

x > 3 y > 5}

w = 2 mod z,

w = 2 mod z,

x + y = 10,

z < 20,

z < 20,

PC = {x < 10,

??

KLEE: Constraint Independence

Essentially, eliminating redundant constraints
• Branches typically depend on small number of variables
• Given a branch query (PC,E), remove from PC all

constraints which are not transitively related to E

x > 3 y > 5}

w = 2 mod z,w = 2 mod z,

x + y = 10,

z < 20,z < 20,

PC = {x < 10,

??

Experimental Evaluation: Main Challenge
Configure KLEE to behave deterministically across runs

Reason
KLEE relies on:
• Timeouts, time-sensitive search heuristics
• Concrete memory addresses (e.g., values returned by malloc)
• Satisfying assignments returned by SMT solver

Steps to Address Nondeterminism
• Employed DFS search heuristics
• Turned off address-space layout randomisation
• Implemented deterministic memory allocator
• Used deterministic seeds for random number generation
• Details in the paper

	Appendix

